NANOCYTES[®]: Herstellung anorganischer und organischer Partikelkerne mit funktioneller Schale: 1. Anwendung in der Medizin und Medizintechnik

Dr. Achim Weber Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB Workshop "NANOPARTIKEL - EINSATZ IN DER MEDIZIN, CHEMIE UND VERFAHRENSTECHNIK", materials valley, Hanau, 21.02.2013

Erkennende Oberflächen

Gliederung

NANOCYTES[®]

- Anorganische Nanopartikel mit SiO_x als Basis f
 ür einstellbare und definierbare Partikeleigenschaften
 - Herstellung, Funktionalisierung & Produktion
 - Beispiel: TNF-NANOCYTES[®]
 - Beispiel: partikelbasierte Mikroarrays
- Organische Nanopartikel als Drug Delivery Systeme
 - Doppelte Emulsion, Wirkstoffbeladung
 - Sprühverfahren
 - Beispiele: Interfeon-Beta, Dexpanthenol

Biomimetische Nanopartikel

Zellen (Zyten)

- Erkennen Moleküle
- Induzieren Signale
- Binden an Materialien
- Wechselhaft in ihrer Struktur
- Hohes Maß an Kommunikation

© Nature Biotechnology

Nanomaterialien

- Große Kontaktfläche
- Synthetisierbar & funktionalisierbar
- Zusammensetzung klar definiert
- Hierarchische Kompositstruktur
- Zunehmend kommunikativ

© Fraunhofer IGB

Biomimetische Nanopartikel

© Nature Biotechnology

© Fraunhofer IGB

NANOCYTES® – Anorganische Kerne

Schalenfunktionalisierung

Synthese nach Stöber

NANOCYTES® – Anorganische Kerne

Oberflächenmodifikationen

Modifikation der Oberfläche durch etablierte Kopplungsreaktionen über freie Carboxy Gruppen.

Über Carbodiimid/Natriumborhydrid und Vernetzer werden Biomoleküle gebunden.

Schiestel et al., Journal of Nanoscience and Nanotechnology 4 (2004), 504-511

Universität Stuttgart

Institut für Grenzflächenverfahrenstechnik

NANOCYTES[®] – Anorganische Kerne SiO_x

Farbstoffbeladene Kerne oder Schalen

NANOCYTES[®] – Anorganische Kerne SiO_x

- Farbstoffbeladene Kerne
- Fluoresziernde Schalen
- Funktionelle organische Oberflächen

1

20 nm bis 300 nm	einstufig
> 300 nm	zweistufig

SiO_x: Anorganische Kerne – C-Dots (Wiessner Group)

A. Burns H. Ow, U. Wiesner, Chemical Society Reviews 35, 1028-1042 (2006).

J. Choi, A. Burns, R. Williams, Z. Zhou, A. Flesken-Nikitin, W. Zipfel, U. Wiesner, A. Niktin, Journal of Biomedical Optics 12 (6) 064007-(1-11) (2007).

H. Ow, D. Larson, M. Srivastava, B. Baird, W. Webb, U. Wiesner, Nano Letters 5 (1), 113-117 (2005).

NANOCYTES® – Partikelproduktion

Miniplant

Universität Stuttgart Institut für Grenzflächenverfahrenstechnik

Application process – SiO₂ nanoparticles

Partikelgrößenwachstum bestimmt über DLS (Microtrac Inc.)

Kinetische Analyse der DLS Daten

Zeitaufgelöste Intensitätsverteilung

Chen et al., Industrial & Engineering Chemistry Research, 35(12):4487–4493, **1996** Giesche et al., Journal of the European Ceramic Society, 14:189–204, **1994**.

Gliederung

NANOCYTES[®]

- Anorganische Nanopartikel mit SiO_x als Basis f
 ür einstellbare und definierbare Partikeleigenschaften
 - Herstellung, Funktionalisierung & Produktion

Beispiel: TNF-NANOCYTES[®]

- Beispiel: partikelbasierte Mikroarrays
- Organische Nanopartikel als Drug Delivery Systeme
 - Doppelte Emulsion, Wirkstoffbeladung
 - Sprühverfahren
 - Beispiele: Interfeon-Beta, Dexpanthenol

NANOCYTES®-Technologie: Gezielte Tötung von Tumorzellen

TNF-NANOCYTES®-Wirkung auf Targetzelle (MF-R2-Fas mit FADD-GFP)

TNF-NANOCYTES[®]-Technologie: TNF

- Tumor Necrosis Factor
- Transmembranprotein
- Auf der Zelloberfläche expremiert
- Membranständige und lösliche Form
- Tumor-Targeting Wirkstoff, aber hoch toxisch

Funktionsprinzip von TNF–NANOCYTES®

Kooperation mit dem Institut für Zellbiologie und Immunologie, Universität Stuttgart

Tovar et al. WO **2003**/020320, EP1425306 Bryde et al. *Bioconj. Chem.* **2005**, *16*, 1459-1467 Weber et al. *Endoskopie heute* **2009**, *22*, 36-39. Herz, M.et al. *Mater. Res. Soc. Symp. Proc.* **2009**, *1190*.

Universität Stuttgart Institut für Grenzflächenverfahrenstechnik

TNF–NANOCYTES®: Immobilisierungsstrategie

Anforderungen

- Immobilisierung als Trimer
- Gerichtet für Rezeptorbindung
- Entsprechende Ligandendichte
- Geringe unspezifische Bindung

Einführung einer PEG-Schale zur Verringerung der unspezifischen Bindung

Unspezifische Bindung

Einführung einer funktionellen PEG-Schale

ζ -Potentialbestimmung

TNF-NANOCYTES®: Apopotose via TNF-Receptor 2 Bioaktivität im Zell-Assay

TNF-NANOCYTES® induzieren Zelltod via TNF-Receptor 2

TNF-NANOCYTES[®]-Wirkung auf Targetzelle (MF-R2-Fas mit FADD-GFP)

S. Bryde et al., Bioconjugate Chemistry, 2005, 16, 1459 IZI, Universität Stuttgart

Gliederung

NANOCYTES[®]

- Anorganische Nanopartikel mit SiO_x als Basis f
 ür einstellbare und definierbare Partikeleigenschaften
 - Herstellung, Funktionalisierung & Produktion
 - Beispiel: TNF-NANOCYTES[®]
 - Beispiel: partikelbasierte Mikroarrays
- Organische Nanopartikel als Drug Delivery Systeme
 - Doppelte Emulsion, Wirkstoffbeladung
 - Sprühverfahren
 - Beispiele: Interfeon-Beta, Dexpanthenol

NANOCYTES® – Mikroarrays

Flexible Oberflächenchemie: Optimierte Immobilisierung der Fängermoleküle

Zufällige IgG Immobilisierung

Gerichtete IgG Immobilisierung über Protein G

Ungerichtet Gerichtet über Protein G Negativ Kontrolle

NANOCYTES® – Mikroarrays

Protein-funktionalisierte Nanopartikel

NANOCYTES® - Mikroarrays

Fluoreszenz-basierte Analytik

Weber, A. et al. Canadian Journal of Analytical Sciences and Spectroscopy 2005, 50 (2), 49-53.

Borchers, K. et al., Analytical and Bioanalytical Chemistry 2005, 383, 738-746.

Universität Stuttgart Institut für Grenzflächenverfahrenstechnik

NANOCYTES® – Mikroarrays

IGB

NANOCYTES® – Mikroarrays

Ink-Jet Drucken

- Tintenformulierung
- Halbleitende Tinten, Tinten mit Nanomaterialien, MOFs, CNTs, etc.
- Biofunktionale Tinten, Proteindruck
- Drucken von funktionalen Nanomaterialien und Mikropartikel
- Oberflächenvorbehandlung, dünne Schichten

Knaupp, M. et al. *Tissue Engineering* **2009**, *15* (3), 675. Borchers, K.; et al. Journal of Dispersion Science and Technology 2011, 32, 1759.

Universität Stuttgart Institut für Grenzflächenverfahrenstechnik

NANOCYTES® – Mikroarray

DNA Mikroarray auf gedruckte Partikelschichten

Signal zu Rauschverhältnis

- Model DNA Mikroarray mit 2 Proben, einer Spotting- und einer Negativkontrolle mit spezifischen Targets bei 66 °C üN Hybridisierung
- 100 nm und 50 nm Nanopartikelschichten
- Vergleich mit Schott Nexterion A+

Scan mittels Axon Genepix 4300A PMT300, 100% Laserenergie

Universität Stuttgart

Gliederung

NANOCYTES[®]

- Anorganische Nanopartikel mit SiO_x als Basis f
 ür einstellbare und definierbare Partikeleigenschaften
 - Herstellung, Funktionalisierung & Produktion
 - Beispiel: TNF-NANOCYTES[®]
 - Beispiel: partikelbasierte Mikroarrays

Organische Nanopartikel als Drug Delivery Systeme

- Doppelte Emulsion, Wirkstoffbeladung
- Sprühverfahren
- Beispiele: Interfeon-Beta, Dexpanthenol

Partikuläre Formulierung

Partikuläre Formulierung

- Verkapselung von niedermolekularen Wirk- und Effektstoffen Biopharmazeutika oder Proteine in Partikel
- Erhöhung der Stabilität (Proteine, Aromen)
- Kontrollierte Freigabe am Zielort
- Nicht-invasive Verabreichung von Biopharmazeutika

Methoden

- Emulsionstechniken
- Sprühverfahren
- Grenzflächenpolymerisation
- Quellung

NANOCYTES® – Partikeltechnologien

Emulsionspolymerisation

Miniemulsionpolymerisation

Emulgator-freie Emulsionspolymerisation

Universität Stuttgart Institut für Grenzflächenverfahrenstechnik

NANOCYTES® – Technologien für organische Partikel

Doppelte Emulsionstechnologie ($w_1/o/w_2$)

Freigabesysteme - Wirkstofftransport

(w₁/o/w₂) - Verkapselungstechniken

- Verkapselung des epidermalen Wachstumsfaktors EGF mittels doppelter Emulsionstechnologie
- Verbesserte Kultivierung von Hautzellen
- Kooperation innerhalb des IGBs mit der Abteilung Zellsysteme

Universität Stuttgart

Institut für Grenzflächenverfahrenstechnik

Gliederung

NANOCYTES[®]

- Anorganische Nanopartikel mit SiO_x als Basis f
 ür einstellbare und definierbare Partikeleigenschaften
 - Herstellung, Funktionalisierung & Produktion
 - Beispiel: TNF-NANOCYTES[®]
 - Beispiel: partikelbasierte Mikroarrays
- Organische Nanopartikel als Drug Delivery Systeme
 - Doppelte Emulsion, Wirkstoffbeladung
 - Sprühverfahren
 - Beispiele: Interfeon-Beta, Dexpanthenol

NANOCYTES[®] – Technologien für organische Partikel

Ziele

- Stabilisierung von Biopharmazeutika
- Controlled drug release
- Nicht-invasives drug delivery

Herstellung über Sprühverfahen

- Nano- und Mini-Sprühtrockner (Büchi)
- Partikelgröße: 100 nm 20 µm
- Verschiedene (Bio)Polymere: **Chitosan**, Polyvinylalkohol, Casein
- Variable Wirkstoffkonzentration
- Zugabe von Stabilisatoren

Universität Stuttgart

nstitut für Grenzflächenverfahrenstechnik

Quervernetzung von Chitosan

Quervernetzung mittels ionischer Gelation

Variation der Vernetzung – Partikel ohne Wirkstoff

TPP-Konz. [%]	Partikelgröße d ₅₀ [μm]	Ausbeute [%]	Restfeuchte [%]
12,50	2,3	77,7	9,7
9,68	2,4	79,1	10,2
6,84	2,5	88,8	10,5
4,00	2,9	75,9	9,7

Fraucholer IGB Device Picker Pocky 5000 Up 1ph 2004 Signal - Kare Vergebring 100 CC LED 1000 F G, Vacder IPF5045 ED 1007 Real vacder 100 Architecture 1 Fra

LED HISTYP SagesEnterA + 108 Abeliabland + 4mm

Quervernetzung mittels ionischer Gelation

Proteinbeladene Partikel (Modellprotein BSA bovine serum albumin)

Ohne Vernetzung wird das komplette Protein schnell freigesetzt.

Mit Vernetzung findet eine verzögerte Freisetzung statt.

Quervernetzte Chitosan-Partikel mit Dexpanthenol

Ansatz	TPP- Konz. [%]	Beladung [%]	Partikel- größe d₅₀ [µm]
SK6a	4,00	-	2,0
SK6b	4,00	8,4	2,7

ohne Dexpanthenol

mit Dexpanthenol

Formulierung von Interferon-beta mittels Sprühtrockner

- Partekelbildung
- Polymer: Chitosanhydrochlorid
- Additive: 5 % Mannitol, 5 % HSA
- Interferongehalt: 0 %, 0,1 % und 0,05 %

Batch	Interferon [%]	Ausb. [%]	Partikel ø [µm]
IF1	-	72,4	2,7
IF2	0,1	83,7	2,8
IF3	0,05	82,0	2,9

Resultierende Formulierung - Bioaktivität

Das verkapselte Interferon zeigt keinen signifikaten Verlust der spezifischen Aktivität

Universität Stuttgart

Ansprechpartner IGB

Dr. Achim Weber Stellv. Abteilungsleiter, Gruppenleiter "Partikuläre Systeme und Formulierungen"

Telefon +49 711 970-4022 achim.weber@igb.fraunhofer.de

